Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256840

ABSTRACT

For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.

2.
ACS Appl Bio Mater ; 6(12): 5264-5281, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38039078

ABSTRACT

Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.


Subject(s)
Biocompatible Materials , Durapatite , Durapatite/pharmacology , Durapatite/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Osteogenesis , Ions/pharmacology
3.
Antioxidants (Basel) ; 12(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37237958

ABSTRACT

Aromatic and medicinal plants are a great source of useful bioactive compounds for use in cosmetics, drugs, and dietary supplements. This study investigated the potential of using supercritical fluid extracts obtained from Matricaria chamomilla white ray florets, a kind of industrial herbal byproduct, as a source of bioactive cosmetic ingredients. Response surface methodology to optimize the supercritical fluid extraction process by analyzing the impact of pressure and temperature on yield and the main bioactive compound groups were used. High-throughput 96-well plate spectrophotometric methods were used to analyze the extracts for total phenols, flavonoids, tannins, and sugars, as well as their antioxidant capacity. Gas chromatography and liquid chromatography-mass spectrometry was used to determine the phytochemical composition of the extracts. The extracts were also analyzed for antimicrobial activity, cytotoxicity, phototoxicity, and melanin content. Statistical analysis was performed to establish correlations between the extracts and develop models to predict the targeted phytochemical recovery and chemical and biological activities. The results show that the extracts contained a diverse range of phytochemical classes and had cytotoxic, proliferation-reducing, and antimicrobial activities, making them potentially useful in cosmetic formulations. This study provides valuable insights for further research on the uses and mechanisms of action of these extracts.

4.
Polymers (Basel) ; 15(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112064

ABSTRACT

The reduction of tissue cytotoxicity and the improvement of cell viability are of utmost significance, particularly in the realm of green chemistry. Despite substantial progress, the threat of local infections remains a concern. Therefore, hydrogel systems that provide mechanical support and a harmonious balance between antimicrobial efficacy and cell viability are greatly needed. Our study explores the preparation of physically crosslinked, injectable, and antimicrobial hydrogels using biocompatible hyaluronic acid (HA) and antimicrobial ε-polylysine (ε-PL) in different weight ratios (10 wt% to 90 wt%). The crosslinking was achieved by forming a polyelectrolyte complex between HA and ε-PL. The influence of HA content on the resulting HA/ε-PL hydrogel physicochemical, mechanical, morphological, rheological, and antimicrobial properties was evaluated, followed by an inspection of their in vitro cytotoxicity and hemocompatibility. Within the study, injectable, self-healing HA/ε-PL hydrogels were developed. All hydrogels showed antimicrobial properties against S. aureus, P. aeruginosa, E. coli, and C. albicans, where HA/ε-PL 30:70 (wt%) composition reached nearly 100% killing efficiency. The antimicrobial activity was directly proportional to ε-PL content in the HA/ε-PL hydrogels. A decrease in ε-PL content led to a reduction of antimicrobial efficacy against S. aureus and C. albicans. Conversely, this decrease in ε-PL content in HA/ε-PL hydrogels was favourable for Balb/c 3T3 cells, leading to the cell viability of 152.57% for HA/ε-PL 70:30 and 142.67% for HA/ε-PL 80:20. The obtained results provide essential insights into the composition of the appropriate hydrogel systems able to provide not only mechanical support but also the antibacterial effect, which can offer opportunities for developing new, patient-safe, and environmentally friendly biomaterials.

5.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978418

ABSTRACT

Skin and soft tissue infections (SSTIs) and acne are among the most common skin conditions in primary care. SSTIs caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) can range in severity, and treating them is becoming increasingly challenging due to the growing number of antibiotic-resistant pathogens. There is also a rise in antibiotic-resistant strains of Cutibacterium acne, which plays a role in the development of acne. Antimicrobial peptides (AMPs) are considered to be a promising solution to the challenges posed by antibiotic resistance. In this study, six new AMPs were rationally designed and compared to five existing peptides. The MIC values against E. coli, P. aeruginosa, K. pneumoniae, E. faecium, S. aureus, and C. acnes were determined, and the peptides were evaluated for cytotoxicity using Balb/c 3T3 cells and dermal fibroblasts, as well as for hemolytic activity. The interaction with bacterial membranes and the effect on TNF-α and IL-10 secretion were also evaluated for selected peptides. Of the tested peptides, RP556 showed high broad-spectrum antibacterial activity without inducing cytotoxicity or hemolysis, and it stimulated the production of IL-10 in LPS-stimulated peripheral blood mononuclear cells. Four of the novel AMPs showed pronounced specificity against C. acnes, with MIC values (0.3-0.5 µg/mL) below the concentrations that were cytotoxic or hemolytic.

6.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677825

ABSTRACT

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Subject(s)
Antiviral Agents , Methyltransferases , SARS-CoV-2 , Methylation , Methyltransferases/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Viral/genetics , S-Adenosylmethionine/chemistry , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology
7.
Molecules ; 28(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36677921

ABSTRACT

It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.


Subject(s)
Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leukocytes, Mononuclear , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants/pharmacology , Ethanol/pharmacology , Water/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Microbial Sensitivity Tests
8.
Plants (Basel) ; 12(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679109

ABSTRACT

In this research, we have reported the valorization possibilities of Matricaria recutita white ray florets using supercritical fluid extraction (SFE) with CO2. Experiments were conducted at temperatures of 35-55 °C and separation pressures of 5-9 MPa to evaluate their impact on the chemical composition and biological activity of the extracts. The total obtained extraction yields varied from 9.76 to 18.21 g 100 g-1 DW input. The greatest extraction yield obtained was at 9 MPa separation pressure and 55 °C in the separation tank. In all obtained extracts, the contents of total phenols, flavonoids, tannins, and sugars were determined. The influence of the supercritical CO2 extraction conditions on the extract antioxidant capacity was evaluated using the quenching activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The chemical composition of the extracts was identified using both gas and liquid chromatography-mass spectrometry methods, whereas analyses of major and minor elements as well as heavy metals by microwave plasma atomic emission spectrometer were provided. Moreover, extracts were compared with respect to their antimicrobial activity, as well as the cytotoxicity and phototoxicity of the extracts. The results revealed a considerable diversity in the phytochemical classes among all extracts investigated in the present study and showed that the Matricaria recutita white ray floret by-product possesses cytotoxic and proliferation-reducing activity in immortalized cell lines, as well as antimicrobial activity. To the best of our knowledge, this is the first paper presenting such comprehensive data on the chemical profile, antioxidant properties, and biological properties of SFE derived from Matricaria recutita white ray florets. For the first time, these effects have been studied in processing by-products, and the results generated in this study provide valuable preconditions for further studies in specific test systems to fully elucidate the mechanisms of action and potential applications, such as potential use in cosmetic formulations.

9.
Front Bioeng Biotechnol ; 10: 917765, 2022.
Article in English | MEDLINE | ID: mdl-35866026

ABSTRACT

Despite the bone ability of self-regeneration, large bone defects require surgical intervention. Likewise, when it comes to osteoporotic bone fractures, new approaches should be considered a supportive mechanism for the surgery. In recent years, more and more attention has been attracted to advanced drug delivery systems for local osteoporosis treatment, combining appropriate biomaterials with antiosteoporotic drugs, allowing simultaneously to regenerate the bone and locally treat the osteoporosis. Within the current research, hyaluronic acid/strontium ranelate (HA/SrRan), HA/calcium phosphate nanoparticles (HA/CaP NPs), and HA/CaP NPs/SrRan hydrogels were prepared. The effect of CaP and SrRan presence in the composites on the swelling behavior, gel fraction, molecular structure, microstructure, and SrRan and Sr2+ release, as well as in vitro cell viability was evaluated. Obtained results revealed that the route of CaP nanoparticle incorporation into the HA matrix had a significant effect on the hydrogel gel fraction, rheological properties, swelling behavior, and microstructure. Nevertheless, it had a negligible effect on the release kinetics of SrRan and Sr2+. The highest cell (3T3) viability (>80%) was observed for HA hydrogels, with and without SrRan. Moreover, the positive effect of SrRan on 3T3 cells was also demonstrated, showing a significant increase (up to 50%) in cell viability if the used concentrations of SrRan were in the range of 0.05-0.2 µg/ml.

10.
Int J Biol Macromol ; 208: 995-1008, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35378161

ABSTRACT

The design of multifunctional hydrogels based on bioactive hyaluronic acid (HA) and antibacterial cationic polymer ɛ-poly-l-lysine (ε-PL) is a promising tool in tissue engineering applications. In the current study, we have designed hyaluronic acid and ɛ-polylysine composite hydrogel systems with antibacterial and cell attractive properties. Two distinct crosslinking approaches were used: the physical crosslinking based on electrostatic attractions and the chemical crosslinking of charged functional groups (-NH2 and -COOH). The impact of the crosslinking strategy on fabricated hydrogel molecular structure, swelling behavior, gel fraction, morphology, porosity, viscoelastic properties, antibacterial activity, and in vitro biocompatibility was evaluated. Both chemically and physically crosslinked HA/ԑ-PL hydrogels demonstrated fast swelling behavior and long-term stability for at least 28 days, as well as similar order of stiffness (10-30 kPa). We demonstrated that physically crosslinked hydrogels inhibited over 99.999% of Gram-negative E. coli, while chemically crosslinking strategy led to the antibacterial efficiency decrease. However, cell viability was significantly improved, confirming the importance of the applied crosslinking approach to the antibacterial activity and in vitro biocompatibility. The distinct differences in the physicochemical and biological properties of the developed materials provide new opportunities to design next-generation functional composite hydrogel systems.


Subject(s)
Hyaluronic Acid , Hydrogels , Anti-Bacterial Agents/pharmacology , Escherichia coli , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Polylysine/pharmacology
11.
Plants (Basel) ; 11(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35270111

ABSTRACT

For sustainable sea buckthorn (Hippophae rhamnoides) berry production, the task at hand is to find an application for the large amount of biomass waste arising at harvesting. Sea buckthorn (SBT) vegetation is currently poorly studied. The purpose of this research was to assess the composition and potential of SBT twigs as a source of valuable biologically active substances. Water and 50% EtOH extracts of twigs of three Latvian SBT cultivars with a high berry yield and quality, popular for cultivation in many countries (H. rhamnoides 'Maria Bruvele', 'Tatiana', 'Botanicheskaya Lubitelskaya'), were investigated for the first time. The phytochemical composition (UHPLC-ESI-MS/MS analysis) and biological activity of the obtained hydrophilic extracts were determined. The highest yield of polyphenolic compounds and serotonin was observed for 'Maria Bruvele'. Hydrophilic extracts were investigated for radical scavenging activity (DPPH˙ test), antibacterial/antifungal activity against five pathogenic bacteria/yeast, cytotoxicity, and the enzymatic activity of alpha-amylase (via in vitro testing), which is extremely important for the treatment of people with underweight, wasting, and malabsorption. The results showed a high potential of sea buckthorn biomass as a source of valuable biologically active compounds for the creation of preparations for the food industry, nutraceuticals, and cosmetics.

12.
Antibiotics (Basel) ; 11(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35203763

ABSTRACT

Bacterial infections are a prevalent complication after primary viral respiratory infections and are associated with high morbidity and mortality. Antibiotics are widely used against bacterial respiratory pathogens; however, the rise in antibiotic-resistant strains urges us to search for new antimicrobial compounds, including ones that act synergistically with antibiotics. In this study, the minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations of a polyphenol-rich complex of green propolis, Tabebuia avellanedae bark, and Olea europaea leaf extracts against Staphylococcus aureus, Haemophilus influenzae, and Klebsiella pneumoniae were determined, followed by an analysis of the synergistic effect with clarithromycin, azithromycin, and amoxiclav (875/125 mg amoxicillin/clavulanic acid). A combination of extracts showed activity against all three bacterial strains, with MIC values ranging from 0.78 to 12.5 mg/mL and MBC values from 1.56 to 12.5 mg/mL. The extracts showed synergistic activity with azithromycin and clarithromycin against S. aureus, with clarithromycin against K. pneumoniae, and with all three tested antibiotics against H. influenzae. Synergy with clarithromycin was additionally evaluated in a time-kill assay where the synergistic effects against S. aureus and K. pneumoniae were seen within the first 6 h of incubation. The results show the potential of polyphenol-rich extracts in enhancing the efficacy of antibiotic therapy and indicate their potential to be used in the management of respiratory infections.

13.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34959647

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 µM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.

14.
Sci Rep ; 11(1): 20181, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642423

ABSTRACT

Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.


Subject(s)
Caspase 3/genetics , Gelsolin/genetics , Inhalation Exposure/adverse effects , Interleukin-6/genetics , Lung/cytology , Occupational Exposure/analysis , Particulate Matter/toxicity , A549 Cells , Cell Proliferation/drug effects , Environmental Monitoring , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Lung/chemistry , Lung/drug effects , Metallurgy , Particle Size , Tissue Survival/drug effects , Wood
15.
ACS Med Chem Lett ; 12(7): 1102-1107, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34257831

ABSTRACT

Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase involved in cellular SAM/SAH ratio regulation was also determined, which indicated that the discovered compounds are nonselective inhibitors of the studied MTases with slight selectivity for Nsp16. No cytotoxic effects were observed; however, this is most likely a result of the poor cell permeability of all evaluated compounds.

16.
J Cancer ; 9(6): 1033-1049, 2018.
Article in English | MEDLINE | ID: mdl-29581783

ABSTRACT

Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF­II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF­II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...